Heat Transfer Analysis of Methane Hydrate Sediment Dissociation in a Closed Reactor by a Thermal Method

نویسندگان

  • Jiafei Zhao
  • Chuanxiao Cheng
  • Weiguo Liu
  • Yu Liu
  • Kaihua Xue
  • Zihao Zhu
  • Zhi Yang
  • Dayong Wang
  • Mingjun Yang
چکیده

The heat transfer analysis of hydrate-bearing sediment involved phase changes is one of the key requirements of gas hydrate exploitation techniques. In this paper, experiments were conducted to examine the heat transfer performance during hydrate formation and dissociation by a thermal method using a 5L volume reactor. This study simulated porous media by using glass beads of uniform size. Sixteen platinum resistance thermometers were placed in different position in the reactor to monitor the temperature differences of the hydrate in porous media. The influence of production temperature on the production time was also investigated. Experimental results show that there is a delay when hydrate decomposed in the radial direction and there are three stages in the dissociation period which is influenced by the rate of hydrate dissociation and the heat flow of the reactor. A significant temperature difference along the radial direction of the reactor was obtained when the hydrate dissociates and this phenomenon could be enhanced by raising the production temperature. In addition, hydrate dissociates homogeneously and the temperature difference is much smaller than the other conditions when the production temperature is around the 10 °C. With the increase of the production temperature, the maximum of ΔToi grows until the temperature reaches 40 °C. The period of ΔToi have a close relation with the total time of hydrate dissociation. Especially, the period of ΔToi with production temperature of 10 °C is twice as much as that at other temperatures. Under OPEN ACCESS

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methane Production from Gas Hydrate Deposits through Injection of Supercritical CO2

The recovery of natural gas from CH4-hydrate deposits in sub-marine and sub-permafrost environments through injection of CO2 is considered a suitable strategy towards emission-neutral energy production. This study shows that the injection of hot, supercritical CO2 is particularly promising. The addition of heat triggers the dissociation of CH4-hydrate while the CO2, once thermally equilibrated,...

متن کامل

Gas outburst with sediments because of tetrahydrofuran hydrate dissociation

Methane hydrate (MH) is a new energy resource in the 21 century. But the dissociation of MH from sediments during the MH exploration or oil/gas exploration under a hydrate layer accompanied by the softening of soils and formation of excess pore gas pressure may lead to ground failures and environmental disasters. In this study, experiments on modeling the weakening and failure of the sediment b...

متن کامل

Kinetics of Propane Hydrate Formation in Agitated Reactor: A Mass Transfer Approach

Understanding the kinetics of gas hydrate formation is essential to model and predict the hydrate formation (or dissociation) process. In the present paper, we investigated the formation of pure propane gas hydrate as a former gas. In this regard, several experiments were conducted to measure the rate of hydrate formation under various pressures (410 to 510 kPa) and temperatures (274 K to 277 K...

متن کامل

A Counter-Current Heat-Exchange Reactor for the Thermal Stimulation of Hydrate-Bearing Sediments

Since huge amounts of CH4 are bound in natural gas hydrates occurring at active and passive continental margins and in permafrost regions, the production of natural gas from hydrate-bearing sediments has become of more and more interest. Three different methods to destabilize hydrates and release the CH4 gas are discussed in principle: thermal stimulation, depressurization and chemical stimulat...

متن کامل

Kinetics of convective crystal dissolution and melting, with applications to methane hydrate dissolution and dissociation in seawater

Large quantities of methane hydrate are present in marine sediment. When methane hydrate is exposed or released to seawater, it dissolves in seawater or dissociates into methane gas and water. There was some confusion in the literature about the kinetics of these processes. It is critical to realize that dissolution and dissociation are two different processes. Dissolution is due to instability...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012